原理部分
代码实现
多项式乘法
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#define N 4000009
#define reg register
using namespace std;
typedef long long ll;
const double pi=3.141592653589793;
struct complex
{
double x,y;
complex(double x=0,double y=0):x(x),y(y) {}
inline complex operator + (const complex b) const
{
return complex(x+b.x,y+b.y);
}
inline complex operator - (const complex b) const
{
return complex(x-b.x,y-b.y);
}
inline complex operator * (const complex b) const
{
complex res;
res.x = x*b.x-y*b.y;
res.y = x*b.y+y*b.x;
return res;
}
};
int n,m;
complex F[N];
int rev[N];
void print(int x);
inline int read()
{
int x=0,w=0;
char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
//while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();以前以为位运算能快点,但问了大佬才发现,其实没啥差别
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return w?-x:x;
}
inline void FFT(complex *a,int type,int lim) //没什么好说的,FFT的模板
{
for(reg int i=1; i<=lim; ++i)
{
if(i>=rev[i]) continue;
swap(a[i],a[rev[i]]);
}
reg complex rt,w,x,y;
for(reg int mid=1; mid<lim; mid<<=1)
{
reg int r = mid<<1;
rt = complex(cos(pi/mid),type*sin(pi/mid));
for(reg int j=0; j<lim; j+=r)
{
w = complex(1,0);
for(reg int k=0; k<mid; ++k)
{
x = a[j|k];
y = w*a[j|k|mid];
a[j|k] = x+y;
a[j|k|mid] = x-y;
w = w*rt;
}
}
}
if(type==1) return;
for(reg int i=0; i<=lim; ++i)
{
a[i].y = a[i].y/lim;
a[i].x = a[i].x/lim;
}
}
int main()
{
int qwq,t,lim = 1,l = -1;
n=read(),m=read();
for(reg int i=0; i<=n; ++i) F[i].x=read();
for(reg int i=0; i<=m; ++i) F[i].y=read(); //把G(x)放到F(x)的虚部上
t = n+m;
n = max(n,m);
while(lim<=(n<<1))
{
lim <<= 1;
++l;
}
for(reg int i=1; i<=lim; ++i)
rev[i] = (rev[i>>1]>>1)|((i&1)<<l);
FFT(F,1,lim);//FFT
for(reg int i=0; i<=lim; ++i)
F[i] = F[i]*F[i]; //求出F(x)^2
FFT(F,-1,lim);//IFFT
for(reg int i=0; i<=t; ++i)
{
qwq = F[i].y/2+0.5; //虚部取出来除2,注意要+0.5,否则精度会有问题
print(qwq);
putchar(' ');
}
return 0;
}
void print(int x)
{
if(x>9) print(x/10);
putchar(x%10+'0');
}
超大数乘法
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#define reg register
using namespace std;
typedef long long ll;
const int maxn=4000009;
const double pi=3.141592653589793;
struct complex
{
double x,y;
complex(double x=0,double y=0):x(x),y(y) {}
inline complex operator + (const complex b) const
{
return complex(x+b.x,y+b.y);
}
inline complex operator - (const complex b) const
{
return complex(x-b.x,y-b.y);
}
inline complex operator * (const complex b) const
{
complex res;
res.x = x*b.x-y*b.y;
res.y = x*b.y+y*b.x;
return res;
}
};
long long n,m;
complex F[maxn];
long long rev[maxn];
void print(long long x);
inline long long read()
{
long long x=0,w=0;
char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
//while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();以前以为位运算能快点,但问了大佬才发现,其实没啥差别
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return w?-x:x;
}
inline void FFT(complex *a,long long type,long long lim) //没什么好说的,FFT的模板
{
for(reg long long i=1; i<=lim; ++i)
{
if(i>=rev[i]) continue;
swap(a[i],a[rev[i]]);
}
reg complex rt,w,x,y;
for(reg long long mid=1; mid<lim; mid<<=1)
{
reg long long r = mid<<1;
rt = complex(cos(pi/mid),type*sin(pi/mid));
for(reg long long j=0; j<lim; j+=r)
{
w = complex(1,0);
for(reg long long k=0; k<mid; ++k)
{
x = a[j|k];
y = w*a[j|k|mid];
a[j|k] = x+y;
a[j|k|mid] = x-y;
w = w*rt;
}
}
}
if(type==1) return;
for(reg long long i=0; i<=lim; ++i)
{
a[i].y = a[i].y/lim;
a[i].x = a[i].x/lim;
}
}
char s1[maxn],s2[maxn];
int output[maxn],cnt;
int main()
{
long long t,lim = 1,l = -1;
cin>>s1>>s2;
n=strlen(s1),m=strlen(s2);
for(reg long long i=0; i<n; ++i) F[i].x=s1[n-i-1]-'0';
for(reg long long i=0; i<m; ++i) F[i].y=s2[m-i-1]-'0'; //把G(x)放到F(x)的虚部上
t = n+m;
n = max(n,m);
while(lim<=(n<<1))
{
lim <<= 1;
++l;
}
for(reg long long i=1; i<=lim; ++i)
rev[i] = (rev[i>>1]>>1)|((i&1)<<l);
FFT(F,1,lim);//FFT
for(reg long long i=0; i<=lim; ++i)
F[i] = F[i]*F[i]; //求出F(x)^2
FFT(F,-1,lim);//IFFT
for(reg long long i=0; i<=t; ++i)
{
output[i]+= F[i].y/2+0.5; //虚部取出来除2,注意要+0.5,否则精度会有问题
output[i+1]+=output[i]/10;
output[i]%=10;
}
int i;
for(i=n+m; !output[i]&&i>=0; i--); //去掉前导零
if(i==-1)printf("0");//特判长度为0的情况
for(; i>=0; i--) //输出这个十进制数
{
printf("%d",output[i]);
}
putchar('\n');
return 0;
}